New products will be presented in Innovation Alley at the stand's centre, while the new Innovation Lab will showcase highly automated and autonomous sustainable future farming.
With an innovative stand concept and a modernised, even more customer-friendly tradeshow presence, CLAAS is breaking new ground at this year’s Agritechnica – the world’s leading agricultural machinery show. Visitors to the 5800 m2 stand will not only be greeted by familiar CLAAS products and innovations such as the EVION, the DISCO 9700 series and the XERION 12 Series. For the first time, they will also get a comprehensive behind-the-scenes glimpse of development projects in the fields of cab/HMI, autonomy and alternative drives. At the Innovation Lab on the CLAAS stand in Hall 13, interested farmers, contractors, students and apprentices will be able to experience different future technologies at close hand and discuss them with CLAAS staff – here, innovation meets interaction, discussion and feedback. Some of the studies and projects on display will be ready for series production in the short- to medium-term and have already secured a silver Agritechnica Innovation Award. Others are geared towards a more long-term perspective.
Autonomous XERION demonstrator: large tractor for highly automated and autonomous fieldwork
CLAAS will be unveiling a prototype autonomous large tractor at Agritechnica 2023. A XERION 12.590 TERRA TRAC has been equipped with relevant sensors such as LIDAR and camera systems, as well as other technology for track planning and process monitoring. Other vehicles are already undergoing further research and component testing in the field.
High-level automation and autonomy are key globally relevant themes for numerous agricultural applications. CLAAS is developing technologies for autonomous field cultivation independently and in partnerships such as 3A – ADVANCED AUTOMATION & AUTONOMY. Practical fieldwork such as tillage with large tractors is just one of the applications scenarios being prioritised. “Large tractors equipped for highly automated and autonomous work are mainly of interest to farms that cannot make full use of a conventional AgBot or whose machine and implement fleet does not match the AgBot’s performance characteristics", explains Christoph Molitor, Head of Technology Management at CLAAS. "In addition to the general shortage of skilled workers in agriculture, we see weather-related harvest delays and mechanical crop care as factors that lead to a concentrated need for labor or a high demand for work capacity. High automation and autonomy can help to equalize such work peaks and labor-intensive agricultural processes."
The XERION 12.590 TERRA TRAC with Autonomy connect on display in the Innovation Lab is technically set up for high automation (Autonomy connect Co-Pilot) and autonomy (Autonomy connect Auto-Pilot). Co-Pilot provides the highest level of process automation, including planning with Autonomy connect – which can be fully integrated into the CLAAS connect platform. With Co-Pilot, the operator mainly performs a supervisory role, while preplanned tractor and implement functions and settings are performed fully automatically by the tractor-implement combination. As before, the operator can intervene directly in the process and further optimise it from the cab. With Auto-Pilot, the tractor operates fully autonomously with no one in the cab. Tasks are planned exactly as with Co-Pilot, but the tractor is equipped with enhanced environment recognition technology in addition to LIDAR, including special camera systems, further safety technology and automated braking. Once on the market, the Autonomy connect planning tool can be fully integrated into the CLAAS connect Internet portal, making it easy to use for day-to-day operations without needing an additional portal.
The Amazone Cenius cultivator also on display in the Innovation Lab is equipped with Amazone AutoTill technology for highly automated and autonomous work. This technology monitors the working position, working depth and roller speed as well as detecting share loss and clogging in the tine area. Data recorded by the cultivator are compared with tractor data, enabling the operating speed to be reduced when blockages are detected or the cultivator raised when roller slip is too high.